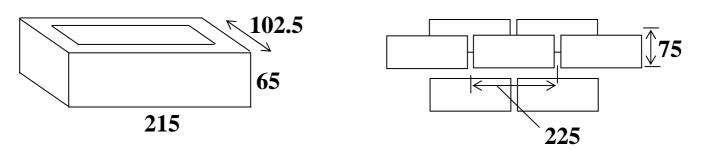
Masonry Design

Masonry construction uses modular units:

- Brickwork (kiln dried clay bricks) mainly for facades;
- Blockwork (concrete blocks) mainly for structural use;
- Stonework (eg. stone arch bridges not covered here) usually ornamental.

Its form of construction may be:


- Unreinforced the usual case;
- Reinforced very useful for garden walls and piers;
- Prestressed unusual, see Peter Rice's Pavilion of the Future in Seville.

We will consider the structural design of unreinforced brick- and block-work.

Bricks

Mostly governed by aesthetic requirements; not normally structural.

- made of clay and kiln dried (hence they expand with moisture);
- very light and strong.

Standard brick size

Format size

Brick Varieties

- i. Common (for general building work)
- ii. Facing specially made for their appearance
- iii. 'Engineering' very dense and strong + defined absorption and strength limits

Blocks

The main structural element in masonry.

- Larger than bricks;
- Made from (lean) concrete wet process (hence they shrink);
- Resistant to moisture.

A larger range of sizes is available, but it is usual in Ireland touse only the $215 \times 100 \times 440$ solid block and the $215 \times 215 \times 440$ hollow block.

'Work size' = size of block

'Co-ordinating size' = size of block + mortar (corresponds to format size in bricks).

Mortar joints are nominally 10 mm.

Movement joints

Used to allow for local effects of temperature and moisture content.

Material	Spacing
Clay bricks	On plan: up to 12 m c/c (6 m from corners); Vertically: 9 m or every 3 storeys if $h > 12$ m or 4 storeys
Concrete blocks	3 m – 7 m c/c

Masonry Design – Basis

Firstly, it is important to note that Irish masonry construction practice differs significantly from British practice and the Irish masonry design standard IS 325: Part 1: *Code of Practice for the Use of Masonry* is to be considered the superior design code and is recognized as such in the Irish Building Regulations, TGD A.

Partial Factors of Safety for design loads, γ_f , are:

a) Dead and imposed load

i) design dead load = 0.9 G_k or 1.4 G_k

- ii) design imposed load = $1.6 Q_k$
- iii) design worst credible earth and water lateral load = $1.2 E_u$
- b) Dead and wind load
 - i) design dead load = 0.9 G_k or 1.4 G_k
 - ii) design wind load = 1.4 W_k
 - iii) design worst credible earth and water lateral load = $1.2 E_u$
- c) Dead, imposed and wind load
 - i) design dead load = $1.2 G_k$
 - ii) design imposed load = $1.2 Q_k$
 - iii) design wind load = $1.2 W_k$
 - iv) design worst credible earth and water lateral load = $1.2 E_u$

The partial factors of safety for material, γ_m , is given by the following:

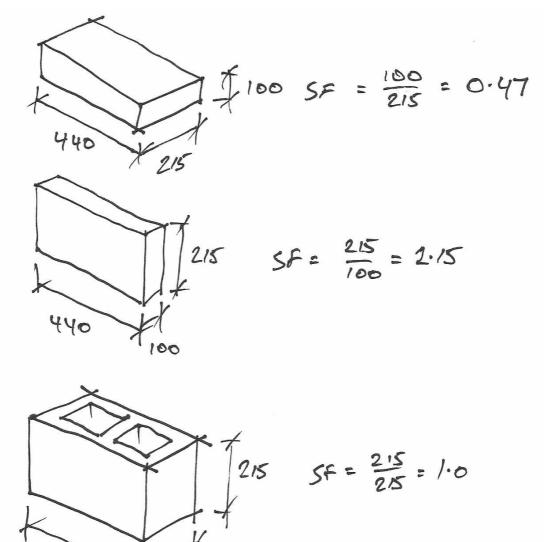
Table 4. Partial safety factors for material strength, γ_m

		Category of construction	of on control
		Special	Normal
Category of manufacturing	Special	2.5	3.1
control of structural units	Normal	2.8	3.5

Characteristic Strength of Masonry, f_k

The characteristic strength is found from Table 2 of I.S. 325 – next two pages.

This table requires:


1. the shape factor for the unit as laid, given by:

shape factor = $\frac{\text{height as laid}}{\text{thickness as laid}}$

The shape factors for usual cases are:

- a) Block on flat: (215×100×440) **0.47**;
- b) Block on edge: $(100 \times 215 \times 440) 2.15;$
- c) Hollow block: (215×215×440) **1.0**.

440

Mortar	Compre	Compressive strength of brick determined as shown in relevant I.S.	th of brick	determined	as shown ii	n relevant I.	s.		
designation					MPa				
	ß	10	15	20	27.5	35	50	70	100
(i)	2.5	4.4	6.0	7.4	9.2	11.4	15.0	19.2	24.0
(ii)	2.5	4.2	5.3	6.4	7.9	9.4	12.2	15.1	18.2
(11)	2.5	4.1	5.0	5.8	7.1	8.5	10.6	13.1	15.5
(iv)	2.2	3.5	4.4	5.2	6.2	7.3	9.0	10.8	12.7
Acres	Compressive	(a) doing a doing which a drandth of block	1 6	strength of block determined on edge per I.S. 20	on edge pe	w I.S. 20			
designation		THERE BAIRS			MPa				
6	3.0	5.0		7.0	10		15	20	
	1.9	3.2		4.1	4	4.9	6.2	7.4	-
(ii)	1.9	3.2		3.9	4	4.6	5.5	6.4	**
(III)	1.9	3.2		3.8	4	4.5	5.2	5.8	
(iv)	1.9	2.8		3.4	S	3.9	4.6	5.2	2
) Constru	icted w	(c) Constructed with hollow blocks		having an aspect ratio of between 2.0 and 4.0	sspect rat	tio of beth	veen 2.0	and 4.0.	
Mortar	Compre	Compressive strength of block determined on	th of block	determined	on edge per I.S.	er I.S. 20			
designation					MPa				
	3.0	5.0		7.0	10		15	20	
(i)	3.0	5.0		5.7	9	6.1	6.8	7.5	S
(ii)	3.0	5.0	;	5.5	ß	5.7	6.1	6.5	2
(111)	3.0	5.0		5.4	2	5.5	5.7	5.9	6
				Contraction of the Contraction o					

C. Caprani

Mortar	Compres	Compressive strength of block determined on edge per I.S. 20	ock determined on	1 edge per I.S. 20		
designation				MPa		
τ,	ഹ	2	10	15	20	30 or greater
(!)	3.2	4.4	. 5.7	7.7	9.5	12.9
(ii)	3.2	4.1	5.4	6.8	8.2	10.8
(111)	3.1	4.1	5.3	6.4	7.5	9.8
(iv)	2.8	3.6	4.5	5.7	6.7	8.5
Mortar	Compres	Morter Compressive strength of block determined on edge per I.S. 20	ock determined or	n edge per I.S. 20		
designation				MPa		
	6	2	10	15	20	30 or greater
(i)	5.0	6.9 9	8.8	12.0	14.8	20.2
(ii)	5.0	6.4	6.4	10.6	12.8	16.8
	5.0	6.4	8.2	10.0	11.6	15.2
(iv)	4.4	5.6	7.0	8.8	10.4	13.2
f) Constru	icted froi	(f) Constructed from solid concrete		blocks having an aspect ratio of between 0.4 and 0.5.	tio of between	1 0.4 and 0.5.
Mortar	Compres	Compressive strength of blo	ock determined on edge per I.S.	n edge per I.S. 20		
designation				MPa		
	ы	7	10	15	20	30 or greater
· (I)	9.0	5.0	6.8	8.5	10.4	12.8
(ii)	3.7	4.6	8.0 8.0	7.3	8.7	10.6
(11)	3.6	4.5	5.4	6.6	7.9	9.8

C. Caprani

	Mortar designation	Type of morter (pi	Type of morter (proportion by volume)		Mean compressive strength at 28 days	essive B days
		Cament : lime : sand	Masonry cament : sand	Cement : sand with piesticizer	Preliminary Site (Isboratory) tests tests	Site teets
Increasing Increasing ability strength to accommodate					MPa	MPa
movement, e.g.		1:0 to ¼:3	1	1	16.0	11.0
due to settlement,		1: ½: 4 to 4%	1:2½ to 3½	1:3 to 4	6.5	4.5
	(111)	1:1:5 to 6	1:4 to 5	1:5 to 6	3.6	2.5
I moisture changes	(iv)	1:2:8 to 9	1:5% to 6%	1:7 to 8	1.5	1.0
Direction of change in properties is shown by the arrows		Increasing during cor	Increasing resistance to frost attack during construction	t attack		
		l mprovem resistance	Improvement in bond and consequent resistance to rain penetration	onsequent		

Table 1. Requirements for mortar

CED(1)

From these tables we derive a "quick-use" table for f_k in N/mm² assuming Mortar Designation (iii):

Designation	Solie	d Block	Hollow Block
(N/mm ²)	On edge (SF = 2.15)	On flat (SF = 0.47)	(SF = 1.0)
5 (grey)	5.0	3.6	3.2
10 (red)	8.2	5.4	4.5
15 (green)	10	6.6	5.2
20 (black)	11.6	7.9	5.8

The colours of the blocks are used to identify different strength blocks on site.

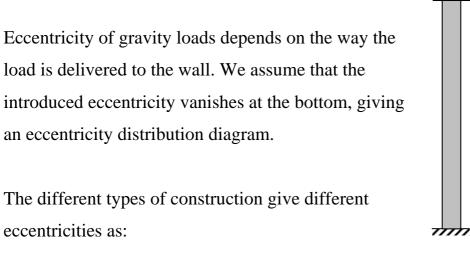
Masonry Design – Axial Capacity

The axial capacity is given by the equation:

$$N = \beta \cdot \frac{f_k t b}{\gamma_m}$$

- *b* is the length, normally taken per metre, so b = 1000 mm;
- *t* is the thickness of the load-bearing leaf;
- f_k is the characteristic compressive strength of masonry.
- γ_m is the partial factor of safety for material:

Unless in exceptional circumstances, $\gamma_m = 3.5$.


• β is the capacity reduction factor:

$$\beta = 1.1 \left[1 - 2 \cdot \frac{e_m}{t} \right]$$

where $\frac{e_m}{t}$ is the maximum eccentricity ratio of the wall which is a function of

- $\frac{e_x}{t}$ the eccentricity ratio due to gravity loads;
- $\frac{e_w}{t}$ the eccentricity ratio due to wind/lateral loads;
- $\frac{e_a}{t}$ the additional eccentricity ratio due to slenderness effects.

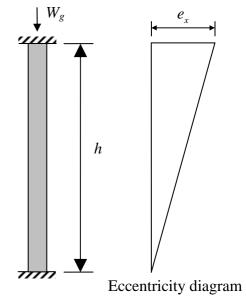
The eccentricities are the most awkward inputs to calculate and are explained in the following.

$\frac{e_x}{t}$ – Eccentricity due to gravity loads

load is delivered to the wall. We assume that the introduced eccentricity vanishes at the bottom, giving an eccentricity distribution diagram.

 W_g W_{g} W_g х W_f e_x t t t Case (a) Case (b) Case (c)

<u>Case (a)</u>: Occurs if the floor is concrete and $\frac{L}{t} \le 30$. The eccentricity is:

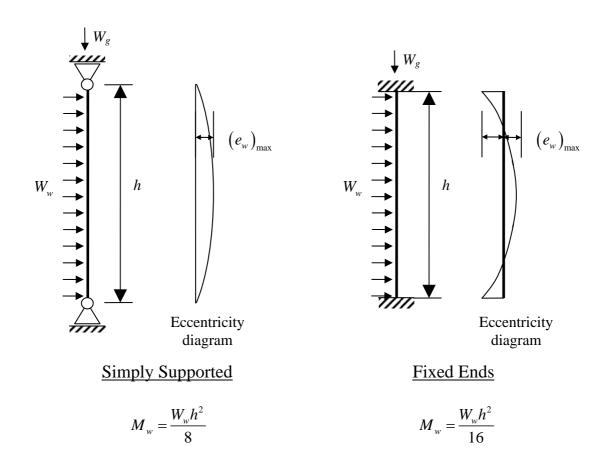

$$e_x = \frac{t}{2} - \frac{x}{2}$$

Case (b): Most cases besides (a) and (c); the eccentricity is:

$$e_x = \frac{t}{2} - \frac{x}{3}$$

Case (c): Joist hangers and the like; the eccentricity is taken as:

$$e_x = \frac{t}{2} + 25 \text{ mm}$$



If there are loads from above; $W_g > 0$, then the net eccentricity of both the loads from above (W_g) and the loads from the current floor (W_f) is:

$$e_x = \frac{W_f \cdot e}{W_g + W_f}$$

and if other floors frame in at this level, we have in general $e_x = \frac{M_{net}}{\sum W}$.

Having calculated e_x we change back to an eccentricity ratio, $\frac{e_x}{t}$.

$\frac{e_w}{t}$ – Eccentricity due to wind loads

The eccentricity and bending moment are related as:

$$e_{w} = \frac{M_{w}}{W_{g}}$$

Having calculated e_w we change back to an eccentricity ratio, $\frac{e_w}{t}$. Note that simply-supported is usually conservative.

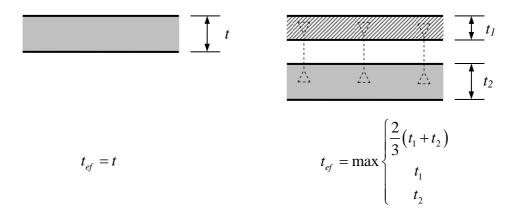
For cases in between simple and fixed supports, we define the degree of fixity as:

$$\phi = \frac{g_d}{f_k / \gamma_m}$$

where g_d is the design vertical stress based on the $0.9G_k$ load case. Based, on ϕ we can interpolate between the simple and fixed cases.

If $\phi > 1$ the wall is fully restrained.

$\frac{e_a}{t}$ – Additional eccentricity due to slenderness

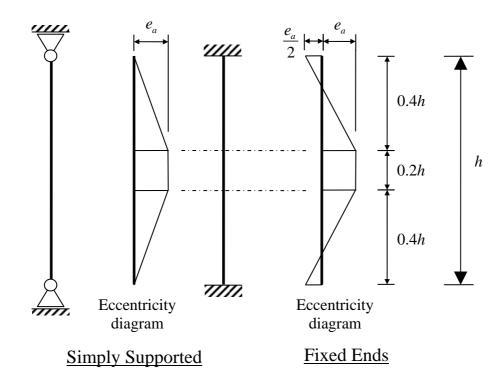

This is given by:

$$\frac{e_a}{t} = \frac{\lambda^2}{2400} - 0.015$$

in which λ is the Slenderness Ratio (SR), and:

$$\lambda = \frac{h_{ef}}{t_{ef}} \le 27$$

• Effective thickness, t_{ef} :

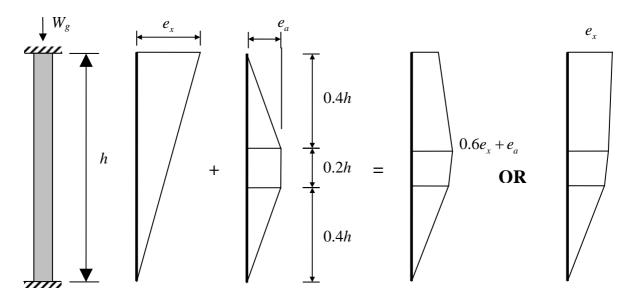

There are more considerations for the effective thickness, such as piers, which we are not examining.

• Effective height, h_{ef} :

There are two cases:

- 1. Enhanced Restraint, where $h_{ef} = 0.75h$:
 - a. The floor passes over the top of the wall;
 - b. The floor is a concrete floor and has a bearing length > t/2.
- 2. All other cases, where $h_{ef} = h$.

Once again, there is an assumed distribution of e_a over the height of the wall.


These diagrams can be thought of as inaccuracies in construction. For example, the wall goes most out of plumb in the middle, where it is furthest from its supports.

Interpolation for intermediate degrees of fixity is used for other restraint conditions.

$\frac{e_m}{t}$ – Total eccentricity

The total eccentricity is determined by adding together the eccentricity diagrams.

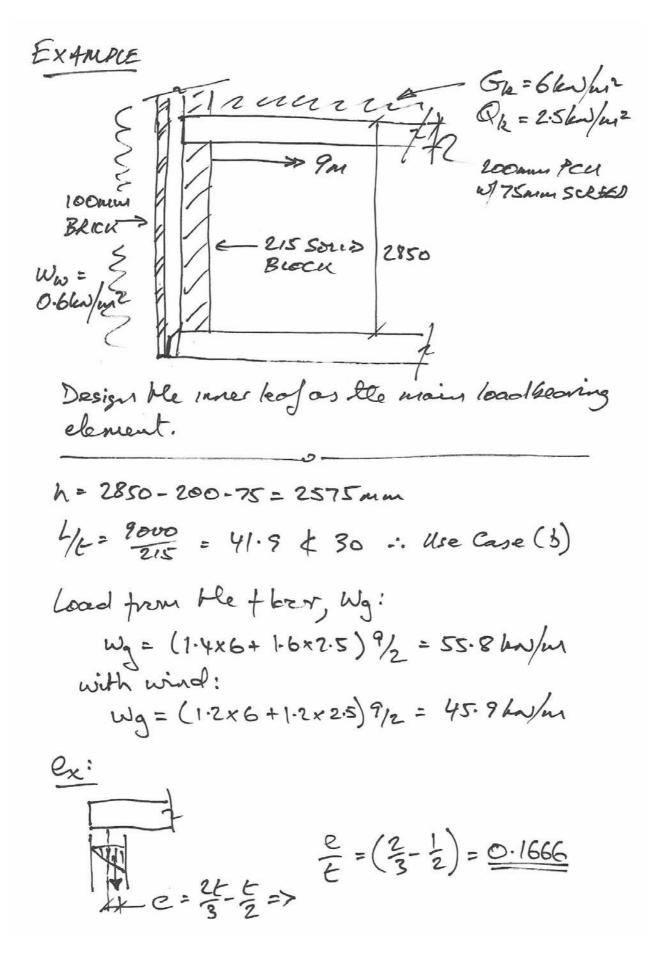
Ignoring the wind load for the moment, we have, for example:

Hence, the total eccentricity is calculated as:

$$\frac{e_m}{t} = \max \begin{cases} \frac{e_x}{t} \\ 0.6 \frac{e_x}{t} + \frac{e_w}{t} + \frac{e_a}{t} \end{cases}$$

This is so as wind eccentricity at the top of the wall is beneficial, whereas the wind eccentricity at 0.6*h* is not. Usually, for simplicity, the maximum wind eccentricity at mid span is added to the $0.6e_x + e_a$ value. The support wind eccentricity (if any) is also taken into account.

Remember! It is usually ok to assume that the governing case is when the wind is blowing, but this may not always be the case. We'll see in an example.


Capacity Reduction Factor

The total eccentricity determined above is used in the expression for the capacity reduction factor:

$$\beta = 1.1 \left[1 - 2 \cdot \frac{e_m}{t} \right]$$

Often there is no wind load present and this simplifies the calculation as once $\frac{e_x}{t}$ has been calculated, the following table may be used to determine β :

Slenderness ratio $h_{\rm ef}/t_{\rm ef}$		Ecce	ntrcity at top of wall, e_{π}		
	Up to 0.5 <i>t</i> (see Note 1)	0.1 <i>t</i>	0.2t	0.3 <i>t</i>	
0	1.00	0.88	0.66	0.44	
6	1.00	0.88	0.66	0.44	
8	1.00	0.88	0.66	0.44	
10	0.97	0.88	0.66	0.44	
12	0.93	0.87	0.66	0.44	
14	0.89	0.83	0.66	0.44	
16	0.83	0.77	0.64	0.44	
18	0.77	0.70	0.57	0.44	
20	0.70	0.64	0.51	0.37	
22	0.62	0.56	0.43	0.30	
24	0.53	0.47	0.34		
26	0.45	0.38			
27	0.40	0.33			
NOTE 1 It is not necessar;	y to consider the effe	ects of eccentricities up	to and including 0.05t.		
NOTE 2 Linear interpolat	ion between eccentri	icities and slenderness	ratios is permitted.		
NOTE 3 The derivation of	β is given in Annex	В.			

$$\frac{e_{\omega}}{Conservatively, use princedcose}:$$

$$M_{\omega} = 1.2 \times 0.6 \times 2.575^{2}/8 = 0.6 km$$

$$\therefore \frac{e_{\omega}}{E} = \frac{M_{\omega}}{E \cdot \omega_{g}} = \frac{0.6 \times 10^{3}}{2.5 \times 45.9} = \frac{0.061}{2.000}$$

$$e_{a} = h_{o} \frac{1}{t_{o} f} \quad h_{o} f = 1.0 h = 2575 mm$$

$$t_{o} f = \frac{2}{3} (100 + 215) = 210 \neq 215$$

$$\therefore f_{o} f = 215$$

$$\therefore f = \frac{2575}{215} = 119 < 27 Verk$$

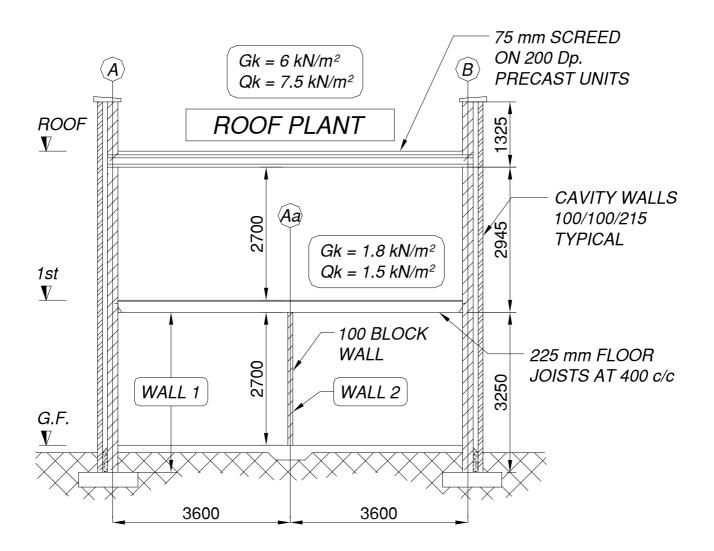
$$\therefore e_{a} = \frac{11.9^{2}}{2400} = 0.015 = 0.0744$$

en

$$\frac{e_{m}}{E} = \max \begin{cases} 0.1666 \\ 0.6(0.1666) + 0.061 + 0.044 \\ = 0.205 \\ \text{Wind} \end{cases}$$

$$= 0.205 \\ \text{Wind} \\ \text{Withert wind}: \\ \frac{e_{m}}{E} = \max \begin{cases} 0.1666 \\ 0.6(0.1666) + 0.0744 \\ = 0.144 \\ = 0.144 \end{cases}$$

Thus,


$$B_{wind} = 1.1 \left[1-2x0.205 \right] = 0.65$$

 $B_{no} wind = 1.1 \left[1-2x0.144 \right] = 0.78$
 $Try a SN block, SF = 0.47$
 $= 3 fk = 3.6 \text{ N/mm}^2$
 $N = B fk t b$
 Y_{m}
 $N_{wind} = 0.65 \times \frac{3.6 \times 215 \times 1000}{3.5} / 10^3$
 $= 143.7 \text{ km/m}$
 $SS.8 \text{ km/m} \therefore \text{ Now}$
 $\frac{1}{3} 45.9 \text{ km/m} \therefore \text{ or}$
 $N_{no} wind \rightarrow \text{ not} \text{ necessary to checke}$

Example

Design the masonry walls indicated as Wall 1 and Wall 2.

Use the follwing information:

- normal manufacturing and construction controls;
- mortar designation (iii);
- use solid concrete blocks $(100 \times 215 \times 440)$ in your design for both walls;
- The density of brickwork & blockwork may be taken as 21.2 kN/m^2 ;
- The roof plant has been allowed for in the roof loading given;
- The joists have a bearing length of 100 mm on the inner leaf of Wall 1.

WALLO · Latons: Rossf: Que GR 6x7.2/2 21-6 7-5× 7.2/2 27 Woeld : 21-2×0-315×(1-325+1-945) 28.52 50.12 27 ku/m =) Wg = 1.4 × 50-12+ 1.6×27 = 113.4 km/m. FLRST FLORIE: Gle Qb 3-24 1.8× 3.6/2 1.5×3.6/2 2.7 5 3.24 2.7 Wf = 1.4×3.24+1.6×2.7 = 8.9 kN/m · GRAVITY ECCENTRICITY: Trangular stress distribution p.wg => e= == - 1/3 = 215 - 100 Twf = 74.17 mm =) e/E = 0.345 $\frac{e_x}{E} = \frac{8.9 \times 74.17}{113.4 + 8.9} / 215 = 0.025$

• Eccentraintry Bue to Sceneraless:

$$t_{eff} = \frac{7}{3}(1eD+215) + 215$$

$$= 210 < 215 = 0 t_{eff} = 215mm$$

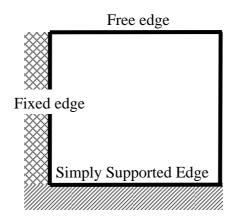
$$h_{eff} = h. (Assume no restaint)$$

$$= 3250 mm$$

$$\Rightarrow \lambda = \frac{3250}{215} = 15 \cdot 1 < 27 Vac$$

$$t_{eff} = \frac{15 \cdot 1}{24c0} = 0.015 = 0.08$$
• Total Eccentreicity:

$$t_{eff} = \frac{15 \cdot 1}{24c0} = \frac{1}{2} \cdot \frac{1}{2$$

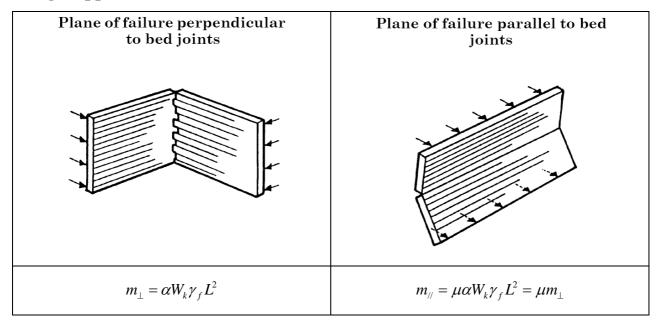

C. Caprani

WALD · Landrade: LOADWIDTH = 3.6m => wf = [1.4×1-8+1-6×1.5] 3.6 = 17.7 ky/m · ECCENTRIGATES : Ex & ew da not opply 1 = 2700 = 27 < 27 Var. $\frac{e_a}{E} = \frac{27^2}{2400} = 0.015 = 0.289$ · DESIGN : B=1.1[1-2×0.289] = 0.465 Try SN solid, A.R. = 2.15 => fr = 5 ~/mm2 =) N= 0.465 × 5×100 = 66.42 kN/m > 17.7 km/m =) cx.

Masonry Design – Flexural Capacity

Firstly, we introduce some general information:

1. <u>Edge support conditions</u> are identified as:



- 2. Limiting dimensions of panels:
 - a. Free Standing wall: $h \leq 12 \cdot t_{ef}$
 - b. Top and bottom supports only: $h \leq 40 \cdot t_{ef}$
 - c. 3 supported edges:
 - 2 or more edges fixed: $hl \leq 1500 \cdot t_{ef}^2$
 - All other cases: $hl \leq 1350 \cdot t_{ef}^2$
 - d. 4 supported edges:
 - 3 or more edges fixed: $hl \le 2250 \cdot t_{ef}^2$
 - All other cases: $hl \le 2025 \cdot t_{ef}^2$

Luckily, it is unusual for these limiting dimensions to be problematic.

3. <u>For irregular shapes</u> we convert to equivalent area rectangles, noting the support conditions.

Design Applied Moments

In which:

- \perp perpendicular to bed joints;
- // parallel to bed joints;
- α coefficient from Table 9 of IS 325;
- W_k characteristic wind load;
- γ_f partial factor of safety for load:
 - for panels <u>not</u> providing lateral stability: $\gamma_f = 1.2$;
 - for panels providing structural stability: $\gamma_f = 1.4$;
- L the span of the panel, usually horizontal;
- μ the *orthogonal ratio* of strength:

$$\mu = \frac{f_{kx//}}{f_{kx\perp}}$$

- $f_{kx/l} l/l$ characteristic strength from Table 3 of IS 325;
- $f_{kx\perp} \perp$ characteristic strength from Table 3 of IS 325.

Table 3 of the code is given next. Note that μ is <u>always</u> less than unity.

JEXL

Table 3. Characteristic flexural strength of masonry, fix, MPa

		a of failure let to bed joints	21		e of failure endicular to bed	joints

Mortar designation	(i)	(ii) and (iii)	(iv)	(i)	(ii) and (iii)	(iv)
Clay bricks having a water absorption less than 7% between 7% and 12% over 12%	0.7 0.5 0.4	0.5 0.4 0.3	0.4 0.35 0.25	2.0 1.5 1.1	1.5 1.1 0.9	1.2 1.0 0.8
Calcium silicate bricks	C).3	0.2	0).9	0.6
Concrete bricks	C).3	0.2	C).9	0.6
Concrete blocks of compressive strength in MPa 3 5 aspect ratio 10 as laid ≮ 1.0* 15 and over	}).25	0.20		0.4 0.5 0.60 0.75 0.90†	0.4 0.45 0.5 0.6 0.7†
Concrete blocks of compressive strength in MPa 5 aspect ratio 7 as laid of 0.4 to 0.5 10 and over) c).25	0.20		0.65 0.8 0.90†	0.45 0.6 0.7†

†When used with flexural strength in parallel direction, assume the orthogonal ratio $\mu = 0.3$.

*See 24.2.

4th Civil

Design Moments of Resistance

Resistance parallel to the bed joints, $M_{R/!}$:

$$M_{R/\prime} = \left[\frac{f_{kx/\prime}}{\gamma_m} + g_d\right] Z$$

where:

- g_d the design vertical axial stress, based on $0.9G_k$ only;
- Z the section modulus, $\frac{bt^2}{6}$, but usually taken per metre, hence b = 1000 mm

Resistance perpendicular to the bed joints, $M_{R\perp}$:

$$M_{R\perp} = \frac{f_{kx\perp}}{\gamma_m} \cdot Z$$

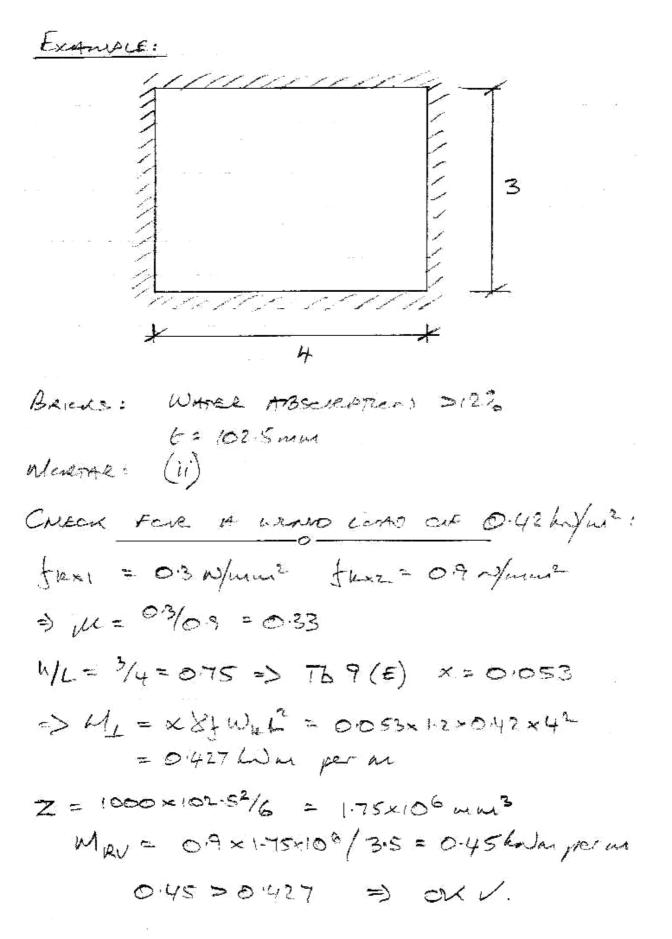
where:

• Z – the section modulus, $\frac{ht^2}{6}$, but usually taken per metre, hence h = 1000 mm

The required wall thickness is the larger of:

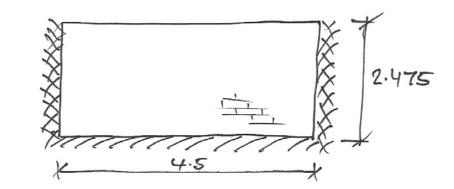
$$t_{\prime\prime\prime} \ge \sqrt{\frac{6m_{\prime\prime}\gamma_m}{f_{kx\prime\prime}h}} \qquad t_{\perp} \ge \sqrt{\frac{6m_{\perp}\gamma_m}{f_{kx\perp}b}}$$

where again as usual; h, b = 1000 mm.


OTE 1 Linear interpolation of μ and h/L is OTE 2 When the dimensions of a wall are L given in this table, it will usually be sufficients on the basis of a simple span. For pe A having h/L less than 0.3 will tend to all, whilst the same panel having h/L great span horizontally.	outside th ficient to c example, a act as a fre	te range of alculate the panel of eestanding				μα • • • •	a	•
			1	2		μα		K .
denotes free edge			Т	- / xxxx	~~~~~~	xixxxx	~~~~~	*`
simply supported edge				-		<u></u>		1
an edge over which full continuity ex	ists							•
	μ	Values	ofα					
		h/L						
		0.3	0.5	0.75	1.00	1.25	1.5	1.75
	1.00	0.031	0.045	0.059	0.071	0.079	0.085	0.090
	0.90	0.032	0.047	0.061	0.073	0.081	0.087	0.092
1	0.80	0.034	0.049	0.064	0.075	0.083	0.089	0.093
A	0.70	0.035	0.051	0.066	0.077	0.085	0.091	0.095
	0.60	0.038	0.053	0.069	0.080	0.088	0.093	0.097
	0.50	0.040	0.056	0.073	0.083	0.090	0.095	0.099
ð	0.40	0.043	0.061	0.077	0.087	0.093	0.098	0.101
	0.35	0.045	0.064	0.080	0.089	0.095	0.100	0.103
	0.30	0.048	0.067	0.082	0.091	0.097	0.101	0.104
	1.00	0.024	0.035	0.046	0.053	0.059	0.062	0.065
	0.90	0.025	0.036	0.047	0.055	0.060	0.063	0.066
AK	0.80	0.027	0.037	0.049	0.056	0.061	0.065	0.067
8	0.70	0.028	0.039	0.051	0.058	0.062	0.066	0.068
8 B	0.60	0.030	0.042	0.053	0.059	0.064	0.067	0.069
В	0.50	0.031	0.044	0.055	0.061	0.066	0.069	0.071
â&	0.40	0.034	0.047	0.057	0.063	0.067	0.070	0.072
·/////////////////////////////////////	0.35	0.035	0.049	0.059	0.065	0.068	0.071	0.073
	0.30	0.037	0.051	0.061	0.066	0.070	0.072	0.074
	1.00	0.020	0.028	0.037	0.042	0.045	0.048	0.050
	0.90	0.021	0.029	0.038	0.043	0.046	0.048	0.050
8	0.80	0.022	0.031	0.039	0.043	0.047	0.049	0.051
8 8	0.70	0.023	0.032	0.040	0.044	0.048	0.050	0.051
c	0.60	0.024	0.034	0.041	0.046	0.049	0.051	0.052
8 8	0.50	0.025	0.035	0.043	0.047	0.050	0.052	0.053
8 8	0.40	0.027	0.038	0.044	0.048	0.051	0.053	0.054
	0.35	0.029	0.039	0.045	0.049	0.052	0.053	0.054
	0.30	0.030	0.040	0.046	0.050	0.052	0.054	0.055
	1.00	0.013	0.021	0.029	0.035	0.040	0.043	0.045
	0.90	0.014	0.022	0.031	0.036	0.040	0.043	0.046
8 8	0.80	0.015	0.023	0.032	0.038	0.041	0.044	0.047
D	0.70	0.016	0.025	0.033	0.039	0.043	0.045	0.047
§ D	0.60	0.017	0.026	0.035	0.040	0.044	0.046	0.048
8 8	0.50	0.018	0.028	0.037	0.042	0.045	0.048	0.050
	0.40	0.020	0.031	0.039	0.043	0.047	0.049	0.051
200000000000000000000000000000000000000	0.35	0.022	0.032	0.040	0.044	0.048	0.050	0.051
	0.30	0.023	0.034	0.041	0.046	0.049	0.051	0.052

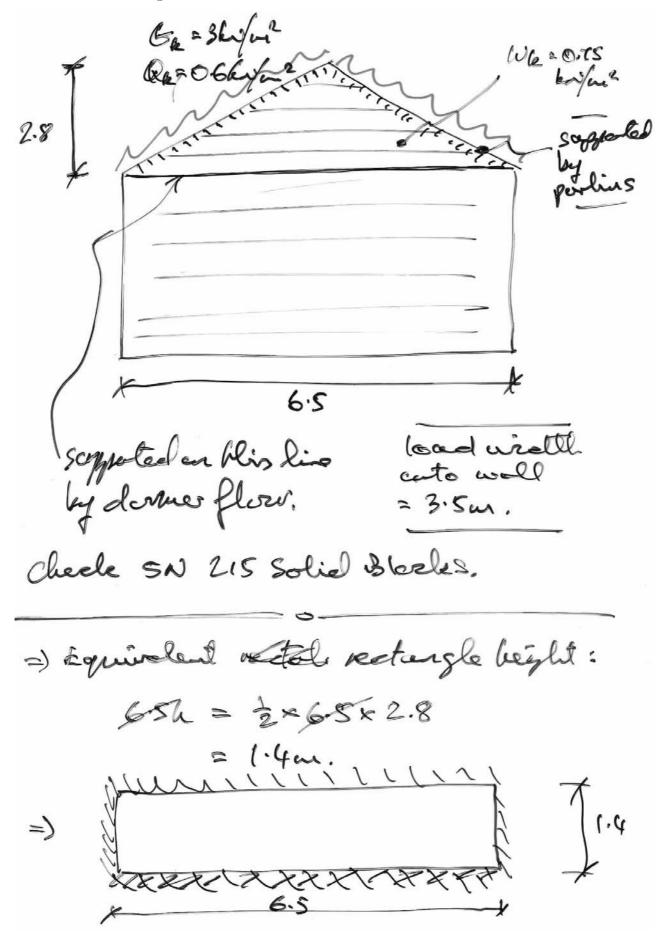
1		Values	f ~					
	μ	Values o	10					
		h/L	0.5	0.75	1.00	1.95	15	1 75
	1.00	0.3	0.5	0.75	1.00	1.25	1.5	1.75
	1.00	0.008	0.018	0.030	0.042	0.051	0.059	0.066
	0.90	0.009	0.019	0.032	0.044	0.054	0.062	0.068
	0.80	0.010	0.021	0.035	0.046	0.056	0.064	0.071
	0.70	0.011	0.023	0.037	0.049	0.059	0.067	0.073
E	0.60	0.012	0.025	0.040	0.053	0.062	0.070	0.076
	0.50	0.014	0.028	0.044	0.057	0.066	0.074	0.080
1	0.40	0.017	0.032	0.049	0.062	0.071	0.078	0.084
777777777777777777777777777777777777777	0.35	0.018	0.035	0.052	0.064	0.074	0.081	0.086
	0.30	0.020	0.038	0.055	0.068	0.077	0.083	0.089
	1.00	0.008	0.016	0.026	0.034	0.041	0.046	0.051
	0.90	0.008	0.017	0.027	0.036	0.042	0.048	0.052
A A A A A A A A A A A A A A A A A A A	0.80	0.009	0.018	0.029	0.037	0.044	0.049	0.054
A K	0.70	0.010	0.020	0.031	0.039	0.046	0.051	0.055
Å F	0.60	0.011	0.022	0.033	0.042	0.048	0.053	0.057
	0.50	0.013	0.024	0.036	0.044	0.051	0.056	0.059
1	0.40	0.015	0.027	0.039	0.048	0.054	0.058	0.062
^ / x	0.35	0.016	0.029	0.041	0.050	0.055	0.060	0.063
	0.30	0.018	0.031	0.044	0.052	0.057	0.062	0.065
	1.00	0.007	0.014	0.022	0.028	0.033	0.037	0.040
******	0.90	0.008	0.015	0.023	0.029	0.034	0.038	0.041
	0.80	0.008	0.016	0.024	0.031	0.035	0.039	0.042
G	0.70	0.009	0.017	0.026	0.032	0.037	0.040	0.043
	0.60	0.010	0.019	0.028	0.034	0.038	0.042	0.044
	0.50	0.011	0.021	0.030	0.036	0.040	0.043	0.046
§	0.40	0.013	0.023	0.032	0.038	0.042	0.045	0.047
·····	0.35	0.014	0.025	0.033	0.039	0.043	0.046	0.048
	0.30	0.016	0.026	0.035	0.041	0.044	0.047	0.049
	1.00	0.005	0.011	0.018	0.024	0.029	0.033	0.036
	0.90	0.006	0.012	0.019	0.025	0.030	0.034	0.037
	0.80	0.006	0.013	0.020	0.027	0.032	0.035	0.038
8	0.70	0.007	0.014	0.022	0.028	0.033	0.037	0.040
8 🖇 🕅	0.60	0.008	0.015	0.024	0.030	0.035	0.038	0.041
H	0.50	0.009	0.017	0.025	0.032	0.036	0.040	0.043
8 8	0.40	0.010	0.019	0.028	0.034	0.039	0.042	0.045
XX.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.	0.35	0.011	0.021	0.029	0.036	0.040	0.043	0.046
	0.30	0.013	0.022	0.031	0.037	0.041	0.044	0.047
1	1.00	0.004	0.009	0.015	0.021	0.026	0.030	0.033
	0.90	0.004	0.010	0.016	0.022	0.027	0.031	0.034
**************************************	0.80	0.005	0.010	0.017	0.023	0.028	0.032	0.035
	0.70	0.005	0.011	0.019	0.025	0.030	0.033	0.037
I	0.60	0.006	0.013	0.020	0.026	0.031	0.035	0.038
	0.50	0.007	0.014	0.022	0.028	0.033	0.037	0.040
	0.40	0.008	0.014	0.024	0.031	0.035	0.039	0.042
***************************************	0.35	0.009	0.010	0.024	0.032	0.037	0.035	0.042
	0.30	0.009	0.017	0.028	0.034	0.038	0.042	0.043
<u> </u>	0.00	0.010	0.015	0.020	0.004	0.000	0.042	0.044

CED(1)


CED(1)

NOTE 1 Linear interpo	lation of μ and h/L is	permitted.							
NOTE 2 When the dim h/L given in this table, i moments on the basis of type A having h/L less t wall, whilst the same pa to span horizontally. Key to support condit denotes free e interpret denotes free e interpret de	t will usually be suffi f a simple span. For e han 0.3 will tend to a unel having <i>h/L</i> great tions	cient to cal xample, a j ct as a free er than 1.76	culate the panel of standing		h	- XI '		:	
					-	- ******		2	
		μ	Values o	fα		Parray Contraction	•		
		<i>[</i>	h/L						
			0.3	0.5	0.75	1.00	1.25	1.5	1.75
		1.00	0.009	0.023	0.046	0.071	0.096	0.122	0.151
1		0.90	0.010	0.026	0.050	0.076	0.103	0.131	0.162
		0.80	0.012	0.028	0.054	0.083	0.111	0.142	0.175
		0.70	0.013	0.032	0.060	0.091	0.121	0.156	0.191
	J	0.60	0.015	0.036	0.067	0.100	0.135	0.173	0.211
	J	0.50	0.018	0.042	0.077	0.113	0.153	0.195	0.237
		0.40	0.021	0.050	0.090	0.131	0.177	0.225	0.272
		0.35	0.024	0.055	0.098	0.144	0.194	0.244	0.296
mmm		0.30	0.027	0.062	0.108	0.160	0.214	0.269	0.325
		1.00	0.009	0.021	0.038	0.056	0.074	0.091	0.108
1	, ,	0.90	0.010	0.023	0.041	0.060	0.079	0.097	0.113
3		0.80	0.011	0.025	0.045	0.065	0.084	0.103	0.120
8		0.70	0.012	0.028	0.049	0.070	0.091	0.110	0.128
3	K	0.60	0.014	0.031	0.054	0.077	0.099	0.119	0.138
8		0.50	0.016	0.035	0.061	0.085	0.109	0.130	0.149
		0.40	0.019	0.041	0.069	0.097	0.121	0.144	0.164
		0.35	0.021	0.045	0.075	0.104	0.129	0.152	0.173
		0.30	0.024	0.050	0.082	0.112	0.139	0.162	0.183
Kan marine	,	1.00 0.90	0.006 0.007	0.015 0.017	0.029	0.044 0.047	0.059 0.063	0.073 0.078	0.088 0.093
		0.90	0.007	0.017	0.032 0.034	0.047	0.065	0.078	0.095
		0.70	0.009	0.018	0.034	0.051	0.073	0.084	0.106
	-	0.60	0.009	0.021	0.038	0.061	0.075	0.090	0.115
	L	0.50	0.012	0.025	0.042	0.068	0.089	0.108	0.115
		0.40	0.012	0.032	0.055	0.078	0.100	0.121	0.139
8		0.35	0.014	0.035	0.060	0.084	0.108	0.121	0.148
1		0.30	0.018	0.039	0.066	0.092	0.116	0.138	0.158
1									

EXAMPLE:


DESIGN THE BRICK & MORTAR COMBANTATION FOR :

Brick - 102.5mm; W/2 = 0.65 km/m² Use Normal control & construction.

 $\therefore M_{1} = KW_{k} g_{1}L^{2} = 0.0712 S \times 0.65 \times 1.2 \times 4.5^{2}$ $= 0.67 LW_{m} / m ren$ $M_{R1} \ge M_{1} \qquad \therefore \frac{f_{k\times 1}}{3.5} \times \frac{1000 \times 102.5^{2}}{6} \ge 0.67 \times 10^{6}$ $\therefore f_{k\times 1} \ge 1.34 N / mm^{2}$ $\therefore Choose Bricks with < 7% moisture$ $\notin Montor type (iii)$ $Checke, M = \frac{0.5}{1.5} = 0.33 \times 0.35 \therefore 0.000$

Gable Wall Example:

SN Bleeles aspect = 0.47
=)
$$f(exz = 0.25 e/um^2) f(ex)^2 = 0.65 N/um^2)$$

 $ul = \frac{0.15}{0.65} = 0.39$
 $level type = Say £ conservative
gd: $ag = 3.5 \times 0.8 \times 3 = 7.45 km/m$
=) $gd = \frac{7.45 \times 10^3}{(000 \times 2.15)}$ per arethe over
 $= 0.0744 N/mm^2$
 $M_4 = K W k k l^2$
 $x: h/L = (-4/6.5 = 0.22)$
=) $K \approx 0.011$
=) $M_4 = 0.011 \times 0.75 \times 1.2 \times 6.5^2 = 0.43 km/m$.
 $M_7 = mM_4 = 0.168 km/m$.
 $M_{F} = 0.0244 \int (10^3 \times 215^2) = 0.58 km/m$$